Package: probe 1.1

probe: Sparse High-Dimensional Linear Regression with a PaRtitiOned Empirical Bayes Ecm (PROBE) Algorithm

Implements an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. It uses minimal prior assumptions on the parameters through plug-in empirical Bayes estimates of hyperparameters. An efficient Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm estimates maximum a posteriori (MAP) values of regression parameters and variable selection probabilities. The PX-ECM results in a robust computationally efficient coordinate-wise optimization, which adjusts for the impact of other predictor variables. The E-step is motivated by the popular two-group approach to multiple testing. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression, implemented using one-at-a-time or all-at-once type optimization. Simulation studies found the all-at-once variant to be superior.

Authors:Alexander McLain [aut, cre], Anja Zgodic [aut, ctb]

probe_1.1.tar.gz
probe_1.1.zip(r-4.5)probe_1.1.zip(r-4.4)probe_1.1.zip(r-4.3)
probe_1.1.tgz(r-4.4-x86_64)probe_1.1.tgz(r-4.4-arm64)probe_1.1.tgz(r-4.3-x86_64)probe_1.1.tgz(r-4.3-arm64)
probe_1.1.tar.gz(r-4.5-noble)probe_1.1.tar.gz(r-4.4-noble)
probe_1.1.tgz(r-4.4-emscripten)probe_1.1.tgz(r-4.3-emscripten)
probe.pdf |probe.html
probe/json (API)

# Install 'probe' in R:
install.packages('probe', repos = c('https://alexmclain.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/alexmclain/probe/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • Sim_data - Simulated high-dimensional data set for sparse linear regression
  • Sim_data_cov - Simulated high-dimensional data set for sparse linear regression with non-sparse covariates.
  • Sim_data_test - Simulated high-dimensional test data set for sparse linear regression

On CRAN:

bayesian-methodshigh-dimensional-datahigh-dimensional-inferencelinear-modelsmachine-learning

3.18 score 1 stars 4 scripts 160 downloads 3 exports 11 dependencies

Last updated 3 months agofrom:b47db222e0. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-win-x86_64WARNINGNov 10 2024
R-4.5-linux-x86_64WARNINGNov 10 2024
R-4.4-win-x86_64WARNINGNov 10 2024
R-4.4-mac-x86_64WARNINGNov 10 2024
R-4.4-mac-aarch64WARNINGNov 10 2024
R-4.3-win-x86_64WARNINGNov 10 2024
R-4.3-mac-x86_64WARNINGNov 10 2024
R-4.3-mac-aarch64WARNINGNov 10 2024

Exports:predict_probe_funcprobeprobe_one

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival